Q:

Find the mass and the center of mass of a wire loop in the shape of a helix (measured in cm: x = t, y = 4 cos(t), z = 4 sin(t) for 0 ≤ t ≤ 2π), if the density (in grams/cm) of the wire at any point is equal to the square of the distance from the origin to the point

Accepted Solution

A:
Answer:Mass[tex]\sqrt{17}(\displaystyle\frac{8\pi^3}{3}+32\pi)[/tex]Center of massCoordinate x[tex]\displaystyle\frac{(\displaystyle\frac{(2\pi)^4}{4}+32\pi)}{(\displaystyle\frac{8\pi^3}{3}+32\pi)}[/tex]Coordinate y[tex]\displaystyle\frac{16\pi}{(\displaystyle\frac{8\pi^3}{3}+32\pi)}[/tex]Coordinate z[tex]\displaystyle\frac{-16\pi}{(\displaystyle\frac{8\pi^3}{3}+32\pi)}[/tex]Step-by-step explanation:Let W be the wire. We can consider W=(x(t),y(t),z(t)) as a path given by the parametric functionsx(t) = ty(t) = 4 cos(t)z(t) = 4 sin(t)  for 0 ≤ t ≤ 2πIf D(x,y,z) is the density of W at a given point (x,y,z), the mass  m would be the curve integral along the path W[tex]m=\displaystyle\int_{W}D(x,y,z)=\displaystyle\int_{0}^{2\pi}D(x(t),y(t),z(t))||W'(t)||dt[/tex]The density D(x,y,z) is given by[tex]D(x,y,z)=x^2+y^2+z^2=t^2+16cos^2(t)+16sin^2(t)=t^2+16[/tex]on the other hand[tex]||W'(t)||=\sqrt{1^2+(-4sin(t))^2+(4cos(t))^2}=\sqrt{1+16}=\sqrt{17}[/tex]and we have[tex]m=\displaystyle\int_{W}D(x,y,z)=\displaystyle\int_{0}^{2\pi}D(x(t),y(t),z(t))||W'(t)||dt=\\\\\sqrt{17}\displaystyle\int_{0}^{2\pi}(t^2+16)dt=\sqrt{17}(\displaystyle\frac{8\pi^3}{3}+32\pi)[/tex]The center of mass is the point [tex](\bar x,\bar y,\bar z)[/tex]where[tex]\bar x=\displaystyle\frac{1}{m}\displaystyle\int_{W}xD(x,y,z)\\\\\bar y=\displaystyle\frac{1}{m}\displaystyle\int_{W}yD(x,y,z)\\\\\bar z=\displaystyle\frac{1}{m}\displaystyle\int_{W}zD(x,y,z)[/tex]We have[tex]\displaystyle\int_{W}xD(x,y,z)=\sqrt{17}\displaystyle\int_{0}^{2\pi}t(t^2+16)dt=\\\\=\sqrt{17}(\displaystyle\frac{(2\pi)^4}{4}+32\pi)[/tex]so[tex]\bar x=\displaystyle\frac{\sqrt{17}(\displaystyle\frac{(2\pi)^4}{4}+32\pi)}{\sqrt{17}(\displaystyle\frac{8\pi^3}{3}+32\pi)}=\displaystyle\frac{(\displaystyle\frac{(2\pi)^4}{4}+32\pi)}{(\displaystyle\frac{8\pi^3}{3}+32\pi)}[/tex][tex]\displaystyle\int_{W}yD(x,y,z)=\sqrt{17}\displaystyle\int_{0}^{2\pi}4cos(t)(t^2+16)dt=\\\\=16\sqrt{17}\pi[/tex][tex]\bar y=\displaystyle\frac{16\sqrt{17}\pi}{\sqrt{17}(\displaystyle\frac{8\pi^3}{3}+32\pi)}=\displaystyle\frac{16\pi}{(\displaystyle\frac{8\pi^3}{3}+32\pi)}[/tex][tex]\displaystyle\int_{W}zD(x,y,z)=4\sqrt{17}\displaystyle\int_{0}^{2\pi}sin(t)(t^2+16)dt=\\\\=-16\sqrt{17}\pi[/tex][tex]\bar z=\displaystyle\frac{-16\sqrt{17}\pi}{\sqrt{17}(\displaystyle\frac{8\pi^3}{3}+32\pi)}=\displaystyle\frac{-16\pi}{(\displaystyle\frac{8\pi^3}{3}+32\pi)}[/tex]